Lipid-dependent generation of dual topology for a membrane protein.
نویسندگان
چکیده
The mechanism by which membrane proteins exhibit structural and functional duality in the same membrane or different membranes is unknown. We posit that such duality is determined by both the protein sequence and the membrane lipid composition wherein a spatial or temporal change in the latter can result in a post-assembly change in protein structure and function. To investigate whether co-existence of multiple topological conformers is dependent on the membrane lipid composition, we determined the topological organization of lactose permease in an Escherichia coli model cell system in which phosphatidylethanolamine membrane content can be systematically varied. At intermediate levels of phosphatidylethanolamine a mixture of native and topologically mis-oriented conformers co-existed. There was no threshold level of phosphatidylethanolamine determining a sharp transition from one conformer to the other. Co-existing conformers were not in rapid equilibrium at a static lipid composition indicating that duality of topology is established during an early folding step. Depletion of intermediate levels of phosphatidylethanolamine after final protein assembly resulted in complete mis-orientation of the native conformer. Combined with previous results, such topological dynamics are reversible in both directions. We propose a thermodynamically based model for how lipid-protein interactions can result in a mixed topological organization and how changes in lipid composition can result in changes in the ratio of topologically distinct conformers of proteins. These observations demonstrate a potential lipid-dependent biological switch for generating dynamic structural and functional heterogeneity for a protein within the same membrane or between different membranes in more complex eukaryotic cells.
منابع مشابه
In vitro reconstitution of lipid-dependent dual topology and postassembly topological switching of a membrane protein.
Phospholipids could exert their effect on membrane protein topology either directly by interacting with topogenic signals of newly inserted proteins or indirectly by influencing the protein assembly machinery. In vivo lactose permease (LacY) of Escherichia coli displays a mixture of topological conformations ranging from complete inversion of the N-terminal helical bundle to mixed topology and ...
متن کاملImpact of Reactive Oxygen Species on Spermatozoa: ABalancing Act between Beneficial and Detrimental Effects
Reactive oxygen species (ROS)plays an important role in sperm motility. The physiological generation at low concentration induces beneficial effects on sperm functions and plays a significant role in sperm metabolism. Meanwhile, the excessive generation of reactive oxygen species can overwhelm protective mechanism and triggers changes in lipid and protein layers of sperm plasma membrane, which ...
متن کاملCharacterization of biophysical properties of single chloride channel in rat brain mitochondrial inner membrane by channel incorporation into bilayer lipid membrane
Introduction: Recent studies have shown the presence of Cl- channels in heart and liver mitochondrial membranes. In this work, we have characterized the functional profile of a Cl- channel from rat brain mitochondria. Methods: After removing and homogenizing the rat brain, the supernatant was separately centrifuged in MSEdigitonin, H2O and Na2CO3 and mitochondrial inner membrane vesicles wer...
متن کاملClathrin-mediated endocytosis of a lipid-raft-associated protein is mediated through a dual tyrosine motif.
We have previously shown that the integral membrane protein CD317 has both a conventional transmembrane domain near its N-terminus and a C-terminal glycosyl-phosphatidylinositol (GPI) anchor. With the possible exception of a minor topological variant of the prion protein, there remain no other convincing examples of a mammalian protein with such a topology. CD317 is localised to cholesterol-ric...
متن کاملProtein and Lactose Separation by Modified Ultrafiltration Membrane using Layer by Layer Technique
Layer-by-Layer (LbL) is a method which can be used for nanoscale coating and surface functionalization of a material. LbL technique mainly uses the electrostatic attracting between charged materials (polyelectrolytes, nanoparticles, etc.) and an oppositely charged surface. In this study, protein separation (BSA) from lactose solution was carried out using the LbL self-assembly method, which was...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 287 45 شماره
صفحات -
تاریخ انتشار 2012